Ceci S, Seis C
Research article (journal) | Peer reviewedWe study the evolution of solutions to the two-dimensional Euler equations whose vorticity is sharply concentrated in the Wasserstein sense around a finite number of points. Under the assumption that the vorticity is merely Lp" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; position: relative;">𝐿𝑝 integrable for some p>2" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; position: relative;">𝑝>2, we show that the evolving vortex regions remain concentrated around points, and these points are close to solutions to the Helmholtz–Kirchhoff point vortex system.
Ceci, Stefano | Institute for Analysis and Numerics |
Seis, Christian | Professorship for applied mathematics (Prof. Seis) |