On the dynamics of point vortices for the 2D Euler equation with Lp vorticity

Ceci S, Seis C

Research article (journal) | Peer reviewed

Abstract

We study the evolution of solutions to the two-dimensional Euler equations whose vorticity is sharply concentrated in the Wasserstein sense around a finite number of points. Under the assumption that the vorticity is merely Lp" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; position: relative;">𝐿𝑝 integrable for some p>2" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; position: relative;">𝑝>2, we show that the evolving vortex regions remain concentrated around points, and these points are close to solutions to the Helmholtz–Kirchhoff point vortex system.

Details about the publication

JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume380
Issue2226
StatusPublished
Release year2022
Language in which the publication is writtenEnglish
DOI10.1098/rsta.2021.0046
Link to the full texthttps://arxiv.org/abs/2107.12820
Keywordsvortex dynamics, Euler equations, unbounded vorticity

Authors from the University of Münster

Ceci, Stefano
Institute for Analysis and Numerics
Seis, Christian
Professorship for applied mathematics (Prof. Seis)