Kermack and McKendrick Models on a Two-Scale Network and Connections to the Boltzmann Equations

Luckhaus, Stephan; Stevens, Angela

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

The Kermack–McKendrick models are often misinterpreted solely as the well-known SIR-ODE-system for the dynamics of susceptibles, infectious and removed during an epidemic. But McKendrick’s equations are by far more general. Here we explain - how his systems can be adapted to cover a small world-large world scenario, where the small world has a different infection mechanism, - how they can be adapted to several variants of viruses competing, and - how even the classical Boltzmann equations can be written in McKendrick form. In the language of delay differential equations, in all three examples the delay parameter becomes multidimensional.

Details zur Publikation

Herausgeber*innenMorel, Jean Michel; Teissier, Bernard
BuchtitelMathematics Going Forward. Lecture Notes in Mathematics, vol 2313 (Band 2313)
Seitenbereich417-427
VerlagSpringer
ErscheinungsortCham
Titel der ReiheLecture Notes in Mathematics (ISSN: 1617-9692)
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/978-3-031-12244-6_29
Link zum Volltexthttps://link.springer.com/chapter/10.1007/978-3-031-12244-6_29#Abs1
StichwörterKermack–McKendrick models; Boltzmann equations; delay parameter

Autor*innen der Universität Münster

Stevens, Angela
Professur für Angewandte Analysis (Prof. Stevens)