The Necessity of Multiple Data Sources for ECG-Based Machine Learning Models.

Plagwitz L; Vogelsang T; Doldi F; Bickmann L; Fujarski M; Eckardt L; Varghese J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Even though the interest in machine learning studies is growing significantly, especially in medicine, the imbalance between study results and clinical relevance is more pronounced than ever. The reasons for this include data quality and interoperability issues. Hence, we aimed at examining site- and study-specific differences in publicly available standard electrocardiogram (ECG) datasets, which in theory should be interoperable by consistent 12-lead definition, sampling rate, and measurement duration. The focus lies upon the question of whether even slight study peculiarities can affect the stability of trained machine learning models. To this end, the performances of modern network architectures as well as unsupervised pattern detection algorithms are investigated across different datasets. Overall, this is intended to examine the generalization of machine learning results of single-site ECG studies.

Details zur Publikation

FachzeitschriftStudies in Health Technology and Informatics (Stud Health Technol Inform)
Jahrgang / Bandnr. / Volume302
Seitenbereich33-37
StatusVeröffentlicht
Veröffentlichungsjahr2023 (18.05.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/SHTI230059
Link zum Volltexthttps://www.semanticscholar.org/paper/The-Necessity-of-Multiple-Data-Sources-for-Machine-Plagwitz-Vogelsang/0dc875dbd003fe62b7d1443ea3d7ec99d0fa5010
StichwörterInformation Sources; Machine Learning; Algorithms; Electrocardiography; Data Accuracy

Autor*innen der Universität Münster

Doldi, Florian Günther
Klinik für Kardiologie II
Eckardt, Lars
Department für Kardiologie und Angiologie
Fujarski, Michael
Institut für Medizinische Informatik
Plagwitz, Lucas
Institut für Medizinische Informatik
Varghese, Julian
Institut für Medizinische Informatik