Genus one free energy contribution to the quartic Kontsevich model

Branahl Johannes, Hock Alexander

Sonstige wissenschaftliche Veröffentlichung

Zusammenfassung

We prove a formula for the genus one free energy F^(1) of the quartic Kontsevich model for arbitrary ramification by working out a boundary creation operator for blobbed topological recursion. We thus investigate the differences in F^(1) compared with its generic representation for ordinary topological recursion. In particular, we clarify the role of the Bergman τ-function in blobbed topological recursion. As a by-product, we show that considering the holomorphic additions contributing to ω_g,1 or not gives a distinction between the enumeration of bipartite and non-bipartite quadrangulations of a genus-g surface.

Details zur Publikation

Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2021 (11.11.2021)
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttps://arxiv.org/abs/2111.05411
Stichwörter(Blobbed) Topological Recursion

Autor*innen der Universität Münster

Branahl, Johannes
Mathematisches Institut