Perturbative and geometric analysis of the quartic Kontsevich model

Branahl, Johannes; Hock, Alexander; Wulkenhaar, Raimar

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The analogue of Kontsevich's matrix Airy function, with the cubic potential Tr(φ3) replaced by a quartic term Tr(φ4) with the same covariance, provides a toy model for quantum field theory in which all correlation functions can be computed exactly and explicitly. In this paper we show that distinguished polynomials of correlation functions, themselves given by quickly growing series of Feynman ribbon graphs, sum up to much simpler and highly structured expressions. These expressions are deeply connected with meromorphic forms conjectured to obey blobbed topological recursion. Moreover, we show how the exact solutions permit to explore critical phenomena in the quartic Kontsevich model.

Details zur Publikation

FachzeitschriftSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Jahrgang / Bandnr. / Volume17
Seitenbereich085null
StatusVeröffentlicht
Veröffentlichungsjahr2021 (16.09.2021)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3842/SIGMA.2021.085
Link zum Volltexthttps://doi.org/10.3842/SIGMA.2021.085
StichwörterDyson-Schwinger equations; perturbation theory; exact solutions; topological recursion

Autor*innen der Universität Münster

Branahl, Johannes
Mathematisches Institut
Hock, Alexander
Mathematisches Institut
Wulkenhaar, Raimar
Professur für Reine Mathematik (Prof. Wulkenhaar)