A Dixmier-Douady Theory for strongly self-absorbing C*-algebras II: the Brauer group

Dadarlat Marius, Pennig Ulrich

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We have previously shown that the isomorphism classes of orientable locally trivial fields of C*-algebras over a compact metrizable space X with fiber D⊗K, where D is a strongly self-absorbing C*-algebra, form an abelian group under the operation of tensor product. Moreover this group is isomorphic to the first group E^1_D(X) of the (reduced) generalized cohomology theory associated to the unit spectrum of topological K-theory with coefficients in D. Here we show that all the torsion elements of the group E^1_D(X) arise from locally trivial fields with fiber D⊗M_n(ℂ), n≥1, for all known examples of strongly self-absorbing C*-algebras D. Moreover the Brauer group generated by locally trivial fields with fiber D⊗M_n(ℂ), n≥1 is isomorphic to Tor(E^1_D(X)).

Details zur Publikation

FachzeitschriftJournal of Noncommutative Geometry (J. Noncommut. Geom.)
Jahrgang / Bandnr. / Volume9
Ausgabe / Heftnr. / Issue4
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.4171/JNCG/218
Link zum Volltexthttp://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=9&iss=4&rank=4
Stichwörtercontinuous fields; C*-algebras; torsion elements

Autor*innen der Universität Münster

Pennig, Ulrich
Professur für Theoretische Mathematik (Prof. Bartels)