Parallelizing Branch-and-Bound on GPUs for Optimization of Multiproduct Batch Plants

Borisenko A, Haidl M, Gorlatch S

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Parallel implementation of the Branch-and-Bound (B&B)technique for optimization problems is a promising approach to accel-erating their solution, but it remains challenging on Graphics ProcessingUnits (GPUs) due to B&B's irregular data structures and poor computa-tion/communication ratio. The contributions of this paper are as follows:1) we develop two basic implementations (iterative and recursive) of B&Bon systems with GPUs for a practical application scenario - optimal de-sign of multi-product batch plants; 2) we propose and implement severaloptimizations of our CUDA code using both algorithmic techniques ofreducing branch divergence and GPU-specific properties of the memoryhierarchy; and 3) we evaluate our implementations and optimizations ona modern GPU-based system and we report our experimental results.

Details zur Publikation

Herausgeber*innenSpringer
BuchtitelParallel Computing Technologies
Seitenbereich324-337
VerlagSpringer
ErscheinungsortCham
Titel der ReiheLecture Notes in Computer Science (ISSN: 978-3-319-21909-7)
Nr. in Reihe9251
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
Konferenz13th International Conference on Parallel Computing Technologies, Petrozavodsk, Russland
ISBN978-3-319-21908-0
DOI10.1007/978-3-319-21909-7_33
StichwörterGPU computing; CUDA; branch-and-bound; combinatorial optimization; multi-product batch plant design

Autor*innen der Universität Münster

Gorlatch, Sergei
Professur für Praktische Informatik (Prof. Gorlatch)
Haidl, Michael
Professur für Praktische Informatik (Prof. Gorlatch)