Trace methods for stable categories I: The linear approximation of algebraic K-theory

Harpaz Y; Nikolaus T; Saunier V

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

We study algebraic K-theory and topological Hochschild homology in the setting of bimodules over a stable category, a datum we refer to as a laced category. We show that in this setting both K-theory and THH carry universal properties, the former defined in terms of additivity and the latter via trace invariance. We then use these universal properties in order to construct a trace map from laced K-theory to THH, and show that it exhibits THH as the first Goodwillie derivative of laced K-theory in the bimodule direction, generalizing the celebrated identification of stable K-theory by Dundas-McCarthy, a result which is the entryway to trace methods.

Details zur Publikation

Name des Repositoriumsarxiv.org
Artikelnummerhttps://arxiv.org/abs/2411.04743
Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
DOI10.48550/arXiv.2411.04743
Link zum Volltexthttps://arxiv.org/abs/2411.04743
StichwörterK-theory; topological Hochschild homology;

Autor*innen der Universität Münster

Nikolaus, Thomas
Professur für Theoretische Mathematik (Prof. Nikolaus)