SkelCL - A Portable Skeleton Library for High-Level GPU Programming

Steuwer Michel, Kegel Philipp, Gorlatch Sergei

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

While CUDA and OpenCL made general-purpose programming for Graphics Processing Units (GPU) popular, using these programming approaches remains complex and error-prone because they lack high-level abstractions. The especially challenging systems with multiple GPU are not addressed at all by these low-level programming models. We propose SkelCL -- a library providing so-called algorithmic skeletons that capture recurring patterns of parallel computation and communication, together with an abstract vector data type and constructs for specifying data distribution. We demonstrate that SkelCL greatly simplifies programming GPU systems. We report the competitive performance results of SkelCL using both a simple Mandelbrot set computation and an industrial-strength medical imaging application. Because the library is implemented using OpenCL, it is portable across GPU hardware of different vendors.

Details zur Publikation

Buchtitel2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW)
Seitenbereich1176-1182
VerlagWiley-IEEE Press
StatusVeröffentlicht
Veröffentlichungsjahr2011
Sprache, in der die Publikation verfasst istEnglisch
Konferenz16th International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS) at IPDPS 2011, Anchorage, AK, USA, undefined
ISBN978-1-61284-425-1
DOI10.1109/IPDPS.2011.269
StichwörterGPU Computing; GPU Programming; Multi-GPU Systems; SkelCL; CUDA; OpenCL; Algorithmic Skeletons

Autor*innen der Universität Münster

Gorlatch, Sergei
Professur für Praktische Informatik (Prof. Gorlatch)
Kegel, Philipp
Institut für Informatik
Steuwer, Michel
Institut für Informatik